Water, Vol. 17, Pages 3101: Forecasting Groundwater Sustainability Through Visual MODFLOW Modelling in the Phulnakhara Canal Command, Coastal Odisha, India


Water, Vol. 17, Pages 3101: Forecasting Groundwater Sustainability Through Visual MODFLOW Modelling in the Phulnakhara Canal Command, Coastal Odisha, India

Water doi: 10.3390/w17213101

Authors:
Abinash Dalai
Mahendra Prasad Tripathi
Atmaram Mishra
Susanta Kumar Jena
Muralitharan Jothimani
Boorla Venkataramana
Sasmita Chand
Jagdeep Kumar Nayak

In the eastern part of India, specifically in the coastal districts of Odisha, the Puri central canalsystem’s Phulnakhara distributary command, which is split between the districts of Cuttack and Khurda, is where the study was taken up during 2020 and 2021. The flow modelling of the Phulnakhara distributary command, covering a 49.03 km2 area, was done by Visual MODFLOW (VMOD). The command area’s conceptual model was created by assigning various input data, and the developed model was calibrated with 1-year data (2020) and validated with 1-year data (2021) on a fortnightly basis for simulating the groundwater flow using VMOD. Both steady state and transient state circumstances were used to calibrate the hydraulic conductivity and storage coefficient for the various layers in 2020. The calibrated hydraulic conductivity values vary from 1.16 × 10−3 ms−1 to 4.86 × 10−4 ms−1, and the calibrated values (2.00 × 10−2 m−1 to 4.00 × 10−6 m−1) of specific storage varied from the first to third layer in both state scenarios. The validated model could forecast the groundwater condition and the flow head for the following ten years, assuming a 0.5% annual drop in recharge by increasing the pumping rate five, six, and seven times throughout the validation period (2021). The modelling study suggested that the command area will not remain safe for 10 years from the point of future groundwater development. The model performance showed strong agreement between simulated and observed groundwater heads, with R2 values ranging from 0.68 to 0.91 and NSE values between 0.64 and 0.88. Predictive simulations indicated groundwater drawdowns of 4.82 m, 5.72 m, and 6.11 m under 5×, 6×, and 7× pumping scenarios, respectively, over the next decade, highlighting a significant risk of depletion unless conjunctive use strategies are adopted.



Source link

Abinash Dalai www.mdpi.com