Water, Vol. 18, Pages 396: Biofilms, Groundwater Seepage, and Internal Controls on Dry-Weather Bacterial Loading in Underground Storm Drains
Water doi: 10.3390/w18030396
Authors:
Barry J. Hibbs
Carol Peralta
Bacterial sourcing in urban watersheds is a critical water quality concern because elevated index bacteria concentrations routinely trigger beach advisories and closures in coastal Southern California and elsewhere. This study evaluates diurnal controls on dry-weather bacterial loading in a groundwater-fed storm drain within the Malibu Creek watershed using a 24 h monitoring campaign. Discharge, nutrients, major ions, stable water isotopes, and index bacteria (total coliforms and Escherichia coli) were measured at six time intervals. Storm drain discharge varied by more than an order of magnitude, with rapid nighttime increases of up to +91 L/min during irrigation periods. Total Dissolved Solids ranged from 1276 to 2175 mg/L, peaking during groundwater-dominated low-flow conditions. Nitrate–N ranged from 1.08 to 2.96 mg/L, and orthophosphate from 0.44 to 2.16 mg/L, with nutrient concentrations increasing as irrigation inputs increased. Total coliform concentrations ranged from 13,000 to 670,000 MPN/100 mL, and E. coli ranged from 300 to 120,000 MPN/100 mL, exceeding concentrations in tap water and recycled water runoff by up to two orders of magnitude. End member mixing analysis showed that storm drain flow consisted of approximately 45% groundwater, 23–26% tap water, and 30–33% recycled water during early morning peak flow, shifting to ~56% groundwater and <12% recycled water by mid-morning. The lowest bacterial concentrations occurred during groundwater-only flow, while the largest bacterial increases coincided with the greatest positive changes in discharge rather than with maximum absolute flow. These results support an irrigation-driven biofilm stripping mechanism as the dominant control on dry-weather bacterial loading, with groundwater seepage sustaining biofilm persistence but not peak bacterial release. The findings highlight the importance of internal storm drain processes for managing coastal bacterial exceedances and protecting beach health.
Source link
Barry J. Hibbs www.mdpi.com


