Water, Vol. 18, Pages 81: Suppression of Sulfur-Induced Corrosion in Sewer Pipe Using Conductive Carbon and Magnetite Iron Linings
Water doi: 10.3390/w18010081
Authors:
Miki Watanabe
Gede Adi Wiguna Sudiartha
Shingo Nakamura
Shuntaro Matsunaga
Nishi Kaito
Tsuyoshi Imai
Sewer corrosion driven by sulfur metabolism threatens infrastructure durability. Current study examined the effect of conductive lining materials on microbial communities and sulfide control under simulated sewer conditions. Three lab-scale reactors (3.5 L total volume, 2.1 L working volume) were prepared with amorphous carbon (SAN-EARTH) and magnetite-black (MTB) linings, while a Portland cement reactor with no coating served as the control. Each reactor was operated for 120 days at room temperature and fed with artificial wastewater. The working volume consisted of 1.4 L of synthetic wastewater mixed with 0.7 L of sewage sludge used as the inoculum source. Sulfate, sulfide, hydrogen sulfide, nitrogen species, pH, and organic carbon were monitored, and microbial dynamics were analyzed via 16S rRNA sequencing and functional annotation. SAN-EARTH and MTB reactors completely suppressed sulfide and hydrogen sulfide, while Portland cement showed the highest accumulation. Both conductive linings maintained alkaline conditions (pH 9.0–10.5), favoring sulfide oxidation. Microbial analysis revealed enrichment of sulfur-oxidizing bacteria (Thiobacillus sp.) and electroactive taxa (Geobacter sp.), alongside syntrophic interactions involving Aminobacterium and Jeotgalibaca. These findings indicate that conductive lining materials reshape microbial communities and sulfur metabolism, offering a promising strategy to mitigate sulfide-driven sewer corrosion.
Source link
Miki Watanabe www.mdpi.com
